找回密码
 立即注册
查看: 3848|回复: 20
收起左侧

[几何] The Wonderful World of Twirls (美妙的卷插世界)

[复制链接]

该用户从未签到

发表于 2012-1-15 13:41:44 | 显示全部楼层 |阅读模式
本帖最后由 time0 于 2012-1-16 16:07 编辑

Flickr 網的 The Wonderful World of Twirls
網址是:   http://www.flickr.com/photos/kburczyk/

Twirls 2009

The model made from 30 Twirl edge modules
Designed and folded by Krystyna Burczyk (2009-08-20)


Twirls 2009

The model made from 30 Twirl edge modules "Butterfly" Designed and folded by Krystyna Burczyk (2009-07-31)


本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
折纸大学,给生活来点闲情!
  • TA的每日心情
    开心
    2024-2-1 06:53
  • 签到天数: 168 天

    连续签到: 15 天

    [LV.7]常住居民III

    发表于 2023-12-2 17:09:58 | 显示全部楼层
    传递有你,分享有我。谢谢!
    折纸大学,给生活来点闲情!
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    3 小时前
  • 签到天数: 55 天

    连续签到: 55 天

    [LV.5]常住居民I

    发表于 4 天前 | 显示全部楼层
    Molto bello!
    折纸大学,给生活来点闲情!
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    2023-6-22 22:02
  • 签到天数: 7 天

    连续签到: 1 天

    [LV.3]偶尔看看II

    发表于 2012-1-16 09:32:47 | 显示全部楼层
    看着挺有意思,就是太少图片了,怎么就发这一张?
    折纸大学,给生活来点闲情!

    该用户从未签到

     楼主| 发表于 2012-1-16 16:12:19 | 显示全部楼层
    本帖最后由 time0 于 2012-1-16 16:51 编辑


    第一張我是偶然見到﹐存了下來的。另外一個站 http://www.flickr.com/photos/kburczyk/ ﹐ "The Wonderful World of Twirls" 還有很多照片。我沒法添加鏈接(總是回到折紙學院首頁)﹐大家可以拷貝網址看看﹐那邊還有好些變化呀。
    折纸大学,给生活来点闲情!

    该用户从未签到

    发表于 2012-1-22 14:35:26 | 显示全部楼层
    上面那个花球挺漂亮,下面那个——很抽象,很耐人寻味。
    折纸大学,给生活来点闲情!

    该用户从未签到

    发表于 2012-2-24 08:42:47 | 显示全部楼层
    好想知道怎么折的。。。
    折纸大学,给生活来点闲情!

    该用户从未签到

     楼主| 发表于 2012-2-24 17:18:17 | 显示全部楼层
    本帖最后由 time0 于 2012-2-24 17:38 编辑
    沫荥.梦 发表于 2012-2-24 08:42
    好想知道怎么折的。。。

    基本由 30 個 水雷基本型 或加變化 組成。可參考British Origami Society 的Curler Units 。 http://www.britishorigami.info/academic/curler.php

    Curler Units

    Use small squares (max 7x7 cm) of stiff paper. Ordinary origami paper is too thin, but photocopy paper works very well. Make a waterbomb base and curl each of the flaps into a cone. As shown in the top view, all flaps are curled clockwise (left-handed folders may find it easier to work from a mirror image of these diagrams - sorry!)





    The paper should stay curled up as indicated (that's why you need heavier paper) so initially you'll need roll up the flaps a bit tighter than shown in the drawings as the curls will open out slightly when you let go.

    To assemble the units, gently ease one curl inside another curl. You can combine 2, 3, 4, 5... curls this way to create many-armed vortexes. You can think of a 3-vortex as a triangle, a 4-vortex is a square and so on. Combining the curls of a number of these units into vortexes you can make several different polyhedra.
    The final drawing (below) shows a cuboctahedron. For this, you'll need 12 units. Join 3 units in a 3-vortex. Join the curls along the 3 edges of this "triangle" and add more units to make each of these linked curls into a 4-vortex.
    Continue building the cuboctahedron until you run out of units. Take care never to put more than one curl of a unit in the same vortex. If you lose track of the curls, just remember that each square is surrounded by 4 triangles and each triangle is surrounded by 3 squares.


    If this explanation doesn't work for you, try the diagrams at the right. First you join 3 units in a sub-assembly (which we simplify to a "curly triangle") and then join 4 of these sub-assemblies as indicated in the big drawing on the right. The arrows and numbers indicate how many curls are joined at each position.

    [url=]

    Further experiments : To make an icosidodecahedron (which consists of 3-vortexes and 5-vortexes) you'll need 30 units. Construction is similar to the cuboctahedron but here each pentagon is surrounded by 5 triangles and each triangle is surrounded by 3 pentagons. When you make constructions with this many units, it's a good idea to make the curls a little tighter (and looser if you use less units, though such sparse assemblies are not as attractive and stable. The 6-unit octahedron, for instance, is rather fragile because the curls are overstretched).You can construct other polyhedra this way (obvious candidates are the (small) rhombicuboctahedron and the (small) rhombicosidodecahedron) but only if there are exactly 4 faces meeting at every corner (vertex) of the polyhedron. This is because the waterbomb base has exactly 4 flaps !If you really want to make polyhedra with 3 faces meeting at the corners you could put 2 curls of a unit in the same vortex or tuck away the fourth flap inside the waterbomb base or just leave 1 curl unconnected (if there is enough room in the vortex) but none of these solutions are very elegant.To make the icosahedron (which has 5 faces meeting at each corner) we just leave a hole where the 5th face should go. As it's quite tricky to assemble, here's another diagram to help you. You use the same 4 sub-assemblies as for the cuboctahedron, but put them Figure 1 together in a slightly different way. The resulting figure is strangely irregular : it looks a bit like an icosahedron but not quite. The "holes" are pulled further apart than the "filled" triangular faces so the modular only has tetrahedral symmetry (and is in fact closely related to the snub tetrahedron).Here you see a strange property of these assemblies : the curls act as tiny rubber bands pulling the units together, so that the structure settles at an equilibrium position where the tension in all the curls is minimal (which is usually, but not always, quite a regular configuration).For the adventurous : A 4-unit tetrahedron is just possible. 3 curls of each unit are joined in 2-vortexes along the tetrahedron's edges, the fourth is unconnected. Or try the 18-unit deltoidal icositetrahedron. All curls are joined in 3-vortexes and those corners of the icositetrahedron where 3 faces meet are left as holes. That's why we only need 18 units instead of 26. Make a 24-unit snub cube, either leaving the 6 square faces as holes or leaving 8 triangular faces as holes (choose those triangles not sharing any edges with the squares)I haven't experimented with colours : I prefer working in white as the shadows on the curved surfaces show up better. If you want to have a go you could try folding your waterbomb bases from pre-coloured squares with a light-dark pattern as shown in the figures on the right. The cuboctahedron will then have triangular vortexes in one colour and square vortexes in the other (this works for the icosidodecahedron as well). If you don't like using pre-printed patterns, get duo paper, blintz it and then fold the blintzed triangles to create the colour pattern you want to experiment with.
    Herman Van Goubergen

    [/url]
    折纸大学,给生活来点闲情!

    该用户从未签到

    发表于 2012-2-24 17:40:50 | 显示全部楼层
    很感谢了,但我英语不好,看不大懂啊。。。
    折纸大学,给生活来点闲情!

    该用户从未签到

     楼主| 发表于 2012-2-24 18:10:44 | 显示全部楼层
    本帖最后由 time0 于 2012-2-24 18:17 编辑

    這個由12個元件組成的﹐也不是中文﹐但有相可參照﹐原理都一樣。 http://origami.paginas.sapo.pt/encaracolado.htm  不難的﹐一定要向同一個方向按照相中角度卷﹐卷實些﹐組合時比其他花球快許多。不妨一試。


    construir a unidade modular







    1. Vamos precisar de 12 quadrados de papel da mesma cor. Convém que não seja muito fino. Papel de fotocópia serve.



    2. Começar por dobrar o quadrado a meio segundo as duas diagonais. Virar.



    3. Do outro lado, dobrar a meio segundo os eixos horizontal e vertical.


    4. Fechar o modelo. Aqui visto por cima.



    5. O modelo depois de fechado fica com este aspecto, com duas abas para cada lado.

    montagem do modelo


    6. Pegar numa das abas e enrolá-la em cone no sentido dos ponteiros do relógio.


    7. Repetir nas outras três abas. Os enrolamentos devem ser todos na mesma direcção. Módulo terminado. Vista lateral.


    8. Visto por cima. Agora é fazer as outras onze unidades.


    9. Aqui temos as doze unidades prontas a encaixar.



    10. Para encaixar duas unidades, basta abrir um pouco uma das abas e enrolá-la juntamente com uma das abas da outra unidade, como podem ver na imagem acima.



    11. Podemos juntar três unidades tomando uma aba de cada uma delas e enrolá-las juntas, formando o que podemos chamar um triangulo.



    12. Da mesma forma, podemos juntar quatro e formar um quadrado.


    13. Para a construção do modelo, começar por juntar as doze unidades em quatro triangulos como descrito em 11.



    14. Para juntar dois triangulos um ao outro, basta enrolar juntas as duas abas laterais de um triangulo com duas abas laterais do outro, para formar umquadrado. Depois enrolam-se juntas as abas soltas dos vértices de um lado e do outro.
    ◄ver nota



    15. A junção do terceiro triangulo é feita da mesma forma, formando um novoquadrado. A aba solta de um dos vértices forma também um novo triangulo. E assim sucessivamente, juntando as laterais (2 + 2) para fazer quadrados e as abas dos vértices (1+1+1) para fazertriangulos.


    16. Este é o aspecto do modelo com três triangulos visto por baixo. Com a junção do quarto triangulo, o modelo ganha bastante elasticidade e vai abrindo conforme vamos colocando as abas nos pontos de enrolamento.
    Se alguma das abas se soltar, voltar a enrolá-la e apertar um pouco.





    17. Modelo terminado





    折纸大学,给生活来点闲情!

    该用户从未签到

    发表于 2012-2-26 12:35:33 | 显示全部楼层
    非常感谢,我一定会学会的,以前觉得自己手工还行,看完你们的作品,好开心,这里真的让我学到好多在生活中学不到的东西,特别是灵感
    折纸大学,给生活来点闲情!

    该用户从未签到

    发表于 2012-2-26 15:46:14 | 显示全部楼层
    现在更加深刻的感受到英文的重要了。。。
    折纸大学,给生活来点闲情!
    您需要登录后才可以回帖 登录 | 立即注册

    本版积分规则

    新手启航红包

    本站声明|小黑屋|手机版|Archiver|折纸学院 ( ICP2021033377-6 )   37032302000141  QQ QQ客服

    GMT+8, 2024-4-20 04:55 , Processed in 0.051133 second(s), 14 queries , MemCached On.

    Powered by Discuz! X3.4

    Copyright © 2001-2021, Tencent Cloud.

    快速回复 返回顶部 返回列表